Advertisement
News
Advertisement

New Study Shows Meganuclease-Driven Targeted Integration Using Cellectis bioresearch's cGPS® CHO-K1 Kit to be Highly Efficient for Drug Discovery

Mon, 07/19/2010 - 11:34am
Bio-Medicine.Org

PARIS, July 19 /PRNewswire-FirstCall/ -- Cellectis bioresearch, a specialist in genome customization and a subsidiary of Cellectis (Alternext: ALCLS), today announced the publication of a scientific study describing a novel method, based on meganuclease-driven targeted integration, for the generation of stable cell lines compatible with high throughput screening (HTS)(1). The study demonstrated Cellectis bioresearch's technology to be faster, more reliable and efficient in deriving cell-based assays for HTS studies than classical methods. The study has been published online by Journal of Biomolecular Screening http://jbx.sagepub.com/cgi/content/abstract/1087057110375115v1.

The development of cell-based assays for HTS approaches is important to screen molecules on pharmaceutical targets and often requires the generation of stable cell lines. However, these cell lines are essentially created by random integration of a gene of interest (GOI) with no control over the level and stability of gene expression. In this study, scientists from the Servier Research institute used Cellectis bioresearch's cellular Genome Positioning System, or cGPS®, in CHO-K1 cells, to accomplish targeted integration of different GOIs. Five different GOIs representing 3 major drug target classes were stably integrated at the same locus in cGPS® CHO-K1 cells. Characterization of the targeted clones revealed that the cGPS® CHO-K1 system was more rapid (2-week protocol), efficient (all selected clones expressed the GOI), reproducible (GOI expression level variation of 12% maximum), and stable over time (no change in GOI expr

'/>"/>

SOURCE

Topics

Advertisement

Share this Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading