Regulus Therapeutics and Collaborators from NYU Langone Medical Center Publish New Data Demonstrating Clearance of Cholesterol from Bloodstream and Reduction of Atheroscleroti...

Mon, 06/06/2011 - 11:35am

LA JOLLA, Calif., June 6, 2011 – Regulus Therapeutics Inc., a biopharmaceutical company leading the discovery and development of innovative medicines targeting microRNAs, today announced publication in the Journal of Clinical Investigation of new pre-clinical data in mice on the antagonism of microRNA-33 (miR-33). The study, performed with collaborators at NYU Langone Medical Center, demonstrated that antagonism of miR-33 with proprietary chemically modified anti-miR oligonucleotides can promote clearance of excess cholesterol and statistically significant regression of atherosclerosis in mice with established atherosclerotic plaques.

Recent advances in lipid metabolism have identified miR-33 as a "master switch" of cholesterol transport genes, such as ATP-binding cassette transporter A1 (ABCA1), a regulator of high density lipoprotein cholesterol (HDL-C), or 'good' cholesterol. Inhibition of miR-33 results in increased ABCA1 expression and elevations in HDL-C, suggesting that miR-33 antagonism may be atheroprotective [Rayneret al. Science 328, 1570 (2010)]. In this new study, in collaboration with Kathryn Moore, Ph.D., associate professor in the Department of Medicine at NYU Langone Medical Center, the impact of miR-33 inhibition was assessed in mice with established atherosclerotic plaques. Treating mice with anti-miR-33 led to increased HDL-C, enhanced reverse cholesterol transport to the plasma, liver and feces, and reductions in plaque size and lipid content.

"We are encouraged by the continuing progress being made on our miR-33 program and the ongoing work done in collaboration with Dr. Moore's lab at NYU Langone," said Hubert Chen, M.D., vice president of translational medi





Share this Story

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.