Nanoparticles Show Which Way the Stem Cells Went

Wed, 03/20/2013 - 6:00pm
Massachusetts Institute of Technology

Giving patients stem cells packaged with silica nanoparticles could help doctors determine the effectiveness of the treatments by revealing where the cells go after they’ve left the injection needle.

Researchers from Stanford University report in a paper published on Wednesday in the journal Science Translational Medicine that silica nanoparticles taken up by stem cells make the cells visible on ultrasound imaging. While other imaging techniques such as MRI can show where stem cells are located in the body, that method is not as fast, affordable, or widely available as an ultrasound scanner, and more importantly, it does not offer a real-time view of injection, say experts.

Stem cells have significant medical promise because they can be turned into other types of living cell. As well as helping doctors adjust therapeutic dosages in patients, the new technique could help scientists perfect stem cell treatments, says senior author Sanjiv Gambhir. “For the most part, researchers shoot blindly—they don’t quite know where the cells are going when they are injected, they don’t know if they home in to the right target tissue, they don’t know if they survive, and they don’t know if they leak into other tissue types,” says Gambhir.

This, in part, could be slowing advances in stem cell treatments. “If stem cells are going to be used as a legitimate medical treatment for the repair of damaged or diseased tissue, then we will need to know precisely where they are going so the treatments can be optimized,” says Lara Bogart, a physicist at the University of Liverpool. Bogart is developing magnetic nanoparticles for tracking stem cells using MRI.


Share this Story

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.