Advertisement
News
Advertisement

Nanoparticle Disguised as a Blood Cell Fights Bacterial Infection

Sun, 04/14/2013 - 1:00pm
Massachusetts Institute of Technology

A nanoparticle wrapped in a red blood cell membrane can remove toxins from the body and could be used to fight bacterial infections, according to research published today in Nature Nanotechnology.

The results demonstrate that the nanoparticles could be used to neutralize toxins produced by many bacteria, including some that are antibiotic-resistant, and could counteract the toxicity of venom from a snake or scorpion attack, says Liangfang Zhang, a professor of nanoengineering at the University of California, San Diego. Zhang led the research.

The “nanosponges” work by targeting so-called pore-forming toxins, which kill cells by poking holes in them. One of the most common classes of protein toxins in nature, pore-forming toxins are secreted by many types of bacteria, including Staphylococcus aureus, of which antibiotic-resistant strains, called MRSA, are endemic in hospitals worldwide and cause tens of thousands of deaths annually. They are also present in many types of animal venom.

There are a range of existing therapies designed to target the molecular structure of pore-forming toxins and disable their cell-killing functions. But they must be customized for different diseases and conditions, and there are over 80 families of these harmful proteins, each with a different structure. Using the new nanosponge therapy, says Zhang, “we can neutralize every single one, regardless of their molecular structure.”

Advertisement

Share this Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading